
Abstract. An intuitive understanding of dynamic cor-
relation in terms of a regularized electron repulsion
expression is outlined. Expressions for cusp kinetic
energy corrected regularized electron repulsion integrals
are deduced and implemented in a multicon®gurational
wave-function framework. A regularized complete active
space self-consistent ®eld (reg-CASSCF) technique is
suggested and tested on atomic total energies, molecular
structures and binding energies.
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1 Introduction

The procedure to obtain the correct electronic wave
function for molecular systems is contained in the
ab initio quantum chemistry formulations of quantum
mechanics. The existence of such e�cient computational
tools is invaluable as intuitive e�ective understanding
can be tested for consistency against Dirac's quantum
mechanics machine [1]. The drawback of the ab initio
approach is the well-known slow convergence of the
wave-function description, which originates from the
two singular preconditions to take the electrostatic
Green's function for the electron-electron interaction,
and to insist on an explicit independent fermion basis. It
becomes the task of the wave function alone to describe
the detailed correlation between electrons, which is
necessary (1) to avoid the r12 � 0 singularity, and (2) to
ful®l the Pauli exclusion principle. Fortunately, although
the latter is correct and proper, in many cases accurate
wave functions are not the central issue. Modern density
functional theory (DFT) is the quintessence of this

understanding. In the Kohn-Sham formulation of DFT
[2], complex properties of the wave function are
absorbed in an e�ective density-dependent functional,
the existence of which is the subject of the Hohenberg-
Kohn theorem [3]. Thus, the probability density corre-
sponding to an independent particle wave function is
shown to contain su�cient information to describe the
ground state of a many-electron system.

The impressive performance of DFT has been dem-
onstrated for a number of exchange-correlation func-
tionals and has made a signi®cant lasting impact on
computational chemistry in expanding the domain of
systems that can be addressed by means of theory.
Maybe the single most important contribution was the
Becke gradient correction to the Slater exchange func-
tional [4, 5]. Nevertheless, the class of problems that
address properties other than the ground state, i.e.
electron spectroscopy and bond-breaking regions on
potential energy surfaces, remain outside the programme
of molecular DFT. It may be argued that a working
strategy to provide such reliable functionals is lacking
within the Kohn-Sham formulation.

It is natural to seek forms that describe non-local
correlation explicitly, and treat dynamic correlation
e�ectively. Thus, the purpose of the present paper is
threefold. It aims to: (1) present the ¯ow of ideas that
point to certain simple mathematical and physical
structures to describe the so-called Coulomb hole, (2)
discuss some particular formulations, and (3) test their
performance in single- and multi-con®gurational calcu-
lations on atoms and molecules.

An intuitive basis for the possible existence of a
simple regularized electron repulsion description of the
Coulomb hole is provided below. It comprises the
background to a recently suggested regularized Hartee-
Fock (HF) scheme [6]. Being closely related to the un-
derstandings of Wigner [7], it bears a great resemblance
to the Coulomb hole approach of Clementi et al. [8±11],
and the MGVB approach of Goodgame and Goddard
[12]. A major source of inspiration to our e�ort has been
the approximate separability of static and dynamic
correlations, demonstrated in the performance of the
CAS-PT2 method [13].
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2 Method

The particular mathematical form for removing the
singular behaviour of the Coulomb interaction is
understood to bene®t from structural similarities
between the Gaussian electron repulsion integrals and
the Ewald expression [14] for Coulomb interactions on a
lattice [15]
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The straightforward interpretation of the right-hand side
of Eq. (2) would be to imply cancellation in Eq.(1) of the
direct-space summation, as it would represent self-
interaction. An extension of this understanding suggests
that the Coulomb hole is an additional damping factor
in Eq. (2), i.e. f1j� 1

ng ! f1j� 1
n� 1

v2g, as the hole implies
omission of ``self-interaction'' in a third ``void''. It is
suggested that the interpretation of this third void to
describe the e�ect of a Coulomb hole is precisely what
the present paper sets out to investigate.

The structural understanding of Eq. (1) implies ob-
taining the resulting interaction by truncation of the
equivalent expressions
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An e�ective separation between local and non-local
correlation is sought in Sect. 2.1, where the role of the
truncated integral representation of rÿ112 will also be
formulated. In Sect. 2.2 it is shown how an electron
repulsion integral (ERI) is modi®ed by introducing the
cut-o� v. An expression for v in terms of primitive
Gaussian basis function exponents is arrived at in
Sect. 2.3. Interpretation of the cut-o� in terms of a
maximum reciprocal length, and analogy to the indeter-
minacy principle are made in Sect. 2.4. Finally, a cusp
kinetic energy interpretation of the Coulomb singularity
is deduced in Sect. 2.5, and employed to produce a
parametrized electron-electron cusp kinetic energy aug-
mented Coulomb hole description. Implementation is
also discussed in this section.

2.1 Separation of local and non-local correlation

Guided by Becke's discussion [16] on the exact electron-
electron interaction contributions to the total energy of a
molecule in terms of the two-particle density matrix
q2�r1; r2�, we write
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and
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It becomes formally necessary for the pair-correlation
function h�r1; r2� to produce the non-local exchange in-
teraction, introduced in order that the wave function of
N-independent electrons satis®es Fermi-Dirac statistics.
There is also the need for a correlation hole description
to mimic the correlated motions of electrons, as such
dynamics cannot be displayed in an independent elec-
tron wave function description. The simplest way to
satisfy these two physical requirements for electron
correlation is to assume they factorize. Thus, we for-
mally rewrite Eq. (6) as
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A special case is presented here and in [6]. As the

particularly simple correlation hole expression
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Equation (10) forces the reduced two-particle density
matrix to take the form
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We obtain the sought expression
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The main achievement above is to make Eq. (13) take
the same form as Eq. (5) and Eq. (6), i.e. hx is kept
explicit and local correlation is treated e�ectively. This is
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a necessary prerequisite for incorporation of the Cou-
lomb hole in an ab initio framework. It is clear that v
must display a complicated density dependence. Below,
it is suggested that an expansion of the two-particle
density matrix in a product of four Gaussians simpli®es
the functional form of v.

2.2 Solving for the �ssjss� ERI

An expression for the v dependence of a general
�sasbjscsd� integral is sought. We replace the Coulomb-
Green's function by
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This produces (see, e.g. [17])
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the sought expression becomes
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It is noted that v!1 restores the untampered ERI.

2.3 An expression for the cut-o� v

In order to obtain an expression for v, we assume that
correlation is the reduction of repulsion at short inter-
electronic distances. Thus, if an independent fermion
wave function is assumed, penalty owing to penetration
of one electron into the region of another electron should
be damped. We write the�ssjss� integral in the form
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where we have introduced

v2 � n� j� e; �21�
without any loss of generality. In order to ®nd an
expression for e, Eq. (20) is replaced in [6] by a related
expression
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as asymptotic properties of Eq. (21) are explored in
order to determine e. Equation (22) is obtained if each
electron is understood to interact with the other,
assuming one to be pinned at its Guassian product
centre of gravity, i.e. the point P(Q) for electron 1
1(2) (2). Thus, Eq. (22) becomes
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Taking n and j su�ciently small results in
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Large eR2

PQ makes the exponential in Eq. (24) a steep
function of s. We recognize that only the small s
contribute and obtain
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The requirement that Eq. (19) and Eq. (25) should be
asymptotically equal produces
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which gives
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to be introduced into Eq. (28) and subsequently Eq. (19).

2.4 Interpretation of v

Consider the truncated electrostatic Green's function
Eqs. (3, 4). The Gaussian envelope in Eq. (3) ensures
that contributions from large jKj-values are damped out.
Furthermore, it is immediately obtained from Eq. (4)
that G � 2v=

���
p
p

in the limit r12 ! 0. But if G�jr1 ÿ r2j; v�
is assumed to mimic a Coulomb hole, then at r12 close to
zero we expect
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This implies a v-dependent e�ective minimum value of
r12 given by q�v� � pp=2v. Furthermore, assuming v2 to
be a given mean square deviation for an ``electron-
electron momentum'' hDk2i suggests a qualitative un-
derstanding of the above regularization in terms of an
indeterminacy principle for relative electron positions
and moments
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introduced a priori into the e�ective Green's function.

2.5 Cusp kinetic energy correction

If a correlated wave function is to be assumed, then an
explicit account of the cusp kinetic energy has to be
given. This has been done in [6], as here, by employing
the virial theorem. We note that the electron repulsion
contribution to the e�ective Hamiltonian is obtained by
replacing 1
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We note that v!1makes the integral in Eq. (32) equal
to rÿ112 and bT cusp in Eq. (35) vanishes. Writing Eq. (35) in
a more useful way produces
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We proceed by estimating the modi®ed electron re-
pulsion interaction, in such a way that repeated use of
Eq. (32) and Eq. (36) is made in the rÿ112 terms that are
generated by the cusp kinetic energy operator. Summing
up the obtained geometric series, we arrive at the ex-
pression for a cusp kinetic energy corrected regularized
electron repulsion coupling
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If the attractive potential V is approximately harmonic,
i.e. we have T � V , then Eq. (38) can be understood to
produce a cusp kinetic energy interpretation of the
Coulomb singularity, i.e.D
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The degree of validity of the approximation in
Eq. (39) is seen in Table 1. Semi-quantitative agreement
with HF energies is achieved, and it is repeatedly noted
that v!1 gives back 1=r12. The behaviour of the
Green's function in Eq. (37) in a multicon®gurational
treatment is left for future investigations and will be
presented elsewhere. Here, a description which neglects
part of the cusp kinetic energy, and does not change the
computational e�ort is sought. The obvious choice is
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A theme in the regularization approach is to preserve the
Coulomb asymptote. This requirement is ful®lled by
putting g � 2, i.e
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This formulation is also seen to produce the same
limiting value (4vpÿ1=2 for r12 ! 0) as Eqs. (37) and (38).

In order to ®nd the electron repulsion integrals ex-
pressions for Eq. (42) we write
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Following the same procedure as above, the sought
regularized ERI comes out in the form of Eq. (19), but
we have
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Setting the value for f to 2, in accordance with Eq. (42),
produces the sought expression for s. Note that if f is
chosen to be in®nity, e becomes zero and the original
expression for the ERIs is recovered.

The fact that ERIs of higher angular moments can be
viewed as generated by vertical recurrence relations in
terms of linear combinations of derivatives on �ssjss� type
integrals completes the formal discussion [18]. The im-
plementation is straightforward, i.e. j� n is replaced by
j� n� e in the kernel of any electron repulsion integrals
code that exploits Gaussian basis sets.

3 Results and discussion

The cusp kinetic energy corrected regularized electron
repulsion integrals were implemented in the program
package MOLCAS [19]. The complete active space self-
consistent ®eld (CASSCF) method [20] is employed to
describe the static correlation explicitly in the wave
function, while the Coulomb hole is employed to
describe e�ective dynamic correlation.

The calculations in the present study are performed
variationally in contrast to those presented in [6]. The
atomic natural orbital (ANO) basis sets of Pierloot et al.

[21] and Widmark et al. [22] are employed to calculate
atomic total energies. Only the Widmark basis set is used
to calculate molecular CASSCF geometries and binding
energies.

3.1 Atomic energy calculations

Additional feeling for how the regularization of the
electrostatic Green's function behaves can be acquired

Table 1. Hartree-Fock (HF) results are compared with two di�erent cusp kinetic energy-corrected descriptions of the e�ective Coulomb
interaction

f1=2 1=2 1=2g is 1
2r12
� 2��

p
p
�

1
2

R
exp ÿs2r212

� �
ds� 1

2 v exp ÿv2r212
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and {0 1 1} is Eq. (37). I P are ionization potentials

HF IP {1/2 1/2 1/2} IP {0 1 1} IP

H )0.500 0.500 )0.500 0.500 )0.500 0.50
He )2.861627 0.862 )2.865819 0.866 )2.870020 0.870
Li )7.432417 0.196 )7.439188 0.196 )7.445965 0.196
Be )14.572373 0.296 )14.583756 0.298 )14.595134 0.300
B )24.527436 0.296 )24.541082 0.295 )24.554745 0.294
C )37.688520 0.396 )37.702207 0.393 )37.715917 0.390
N )54.400774 0.513 )54.411329 0.508 )54.421916 0.503
O )74.811163 0.439 )74.823449 0.440 )74.835774 0.442
F )99.410071 0.578 )99.421804 0.577 )99.433570 0.576
Ne )128.545607 0.727 )128.553389 0.723 )128.561185 0.719

Table 2. Restricted Hartree-Fock (RHF) and regularized (2 á v) reg-
RHF total energies (Hartree) are compared to the exact values [34].
The atomic natural orbit (ANO) basis sets are 6s4p [21] and 7s7p
for (7s for Li and He) [22]. Regularized (2 á v) complete active space
self-consistent ®eld (reg-CASSCF) describes the static 2s-2p
correlation explicitly

Atom RHF reg-RHF reg-CASSCF Exact

He
[21] )2.858018 )2.883902 ±
[22] )2.861627 )2.884368 )2.9037

Li
[21] )7.431235 )7.470307 ±
[22] )7.432710 )7.470596 )7.4781

Be
[21] )14.566764 )14.637062
[22] )14.572988 )14.637670 )14.675880 )14.6674

B
[21] )24.513948 )24.620449
[22] )24.529060 )24.622008 )24.651537 )24.6539

C
[21] )37.679752 )37.812175
[22] )37.688573 )37.815113 )37.831234 )37.8450

N
[21] )54.382672 )54.561661 ±
[22] )54.400791 )54.566449 )54.5893

O
[21] )74.780490 )75.035848 ±
[22] )74.811223 )75.043686 )75.067

F
[21] )99.366944 )99.710259 ±
[22] )99.410189 )99.722247 )99.734

Ne
[21] )128.483953 )128.933876 ±
[22] )128.546579 )128.951027 )128.939
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by studying atomic energies. Table 2 apparently implies
a situation where dynamic angular correlation is includ-
ed e�ectively into G�jr1 ÿ r2j; 2 � v�. The success for
neon is countered by the failure in the case of helium. It
is understood that detailed description of angular
correlation is more important for helium than for the
larger atoms owing to the smallness of the 1s orbital in
conjunction with the small nuclear charge. The need for
explicit angular correlation is reduced signi®cantly by
going to the n � 2 shell, both because atomic sizes
increase and because 2p orbitals become increasingly
occupied. As for Be, B and C, the conventional
description of energetic stabilizations including the
near-degeneracies of the valence shell is found to hold.
It is gratifying to note that the numbers come out in
good overall agreement with the exact, and that basis set
e�ects are much reduced if regularized CASSCF
(reg-CASSCF) is employed.

Additional support for the above understanding is
found from full CI calculations. Table 3 shows results
obtained on replacing rÿ112 by G�jr1 ÿ r2j;

���
5
p � v�. An-

gular correlation e�ects on the atomic energetics in
general and that of He in particular are seen. Results for
improved valence basis sets without allowing for radial
correlation are also included in Table 3. The angular
correlation and basis set e�ects can be argued to be
additive, and are seen to produce semi-quantitative
results.

The tendency to produce too low energies indicates a
shortcoming of the assumed Coulomb hole description in
the 1s core. This e�ect becomes more accentuated for the
third-row atoms. The fact that both the explicit and the
e�ective angular correlation descriptions lead to atomic
energies close to experimental data for all second-row
atoms, stresses the exclusive status of helium.

3.2 Binding energies and structures of small molecules

Full valence molecular calculations were performed with
the Widmark et al. basis set [22], employing 4s3p2d
ANO spaces for the heavy atoms (5s 4p 3d for phos-
phorous) and 3s 1p for hydrogen. Tables 4 and 5 display
atomization energies and optimized molecular struc-
tures, respectively. The quality of the CASSCF method
to describe proper dissociation in conjunction with lack

of dynamic correlations is well-known to produce bond
distances which are too long. This e�ect is demonstrated
in Table 4 where the impact of the modi®ed f � 2
Green's function is seen to generally produce bond
distances which are slightly too short. This indicates that
f � 2 is a lower boundry, although basis set e�ects have
not been investigated.

Energetics are found to be generally improved by
applying the reg-CASSCF approach. Binding energies
are seen to sometimes undershoot or overshoot in an
apparently irregular fashion. This e�ect is not unex-
pected given that separation between static correlation
and dynamic correlation is not well-de®ned. This was
discussed in some detail in the case of Cr2 [23]. Reference
results of a representative density functional are pro-
vided in Tables 4 and 5, by means of the Becke gradient
correction [5] to the Slater exchange functional [4] in
conjunction with the Lee, Yang and Parr correlation
functional (B-LYP) [24]. Hence, the main qualitative
achievement of the present undertaking from a DFT
perspective is to demonstrate that by keeping a proper
exchange interaction there is a need for explicit treat-
ment of static correlation. This is in accord with the
understanding of Neumann et al. [25].

Table 3. Reg-CASSCF ( f � ���
5
p

) total energies for atoms. Thw Widmark et al. [22] ANO-basis set is employed. FCI is full CI. Only explicit
angular correlation is allowed. Exact energies are given in Table 2

1s(FCI) 1s1p(FCI) 1s1p1d(FCI) 1s4p3d

He )2.879884 )2.896232 )2.897754 )2.899559

2s1p(FCI) 2s1p1d(FCI) 2s1p1d1f(FCI) 2s2p 2s2s1d 2s2p2d
Li )7.482521 )7.482522 ± ± ± ±
Be )14.663362 )14.6636665 )14.663744 )14.664282 )14.664613 )14.664613
B )24.618400 )24.635878 )24.637023 )24.632587 )24.652867 )24.654647
C )37.800742 )37.837976 )37.841804 )37.805196 )37.844083 )37.846200
N )54.527878 )54.582146 )54.589669 )54.531583 )54.587446 )54.588273
O )74.991167 )75.053831 )75.069105 )75.994800 )75.058735 )75.059629
F )99.653662 )99.723504 )99.743785 )99.656746 )99.727607 )99.728504
Ne )128.869528 )128.946163 )128.969303 )128.869875 )128.946670 )128.947108

Table 4.Atomization energies in eV. TheCASSCF ( f � 1) and reg-
CASSCF ( f � 2) results for full-valence active spaces. B-LYP and
experimental results (Exp.) are taken from Ref. [35]

CASSCF reg-CASSCF B-LYP Exp.

H2 4.13 4.45 4.84 4.75
Li2 1.02 1.09 0.88 1.01
HF 4.94 5.48 6.12 6.13
CO 10.51 11.46 11.32 11.23
N2 8.73 10.07 10.33 9.91
F2 0.03 1.19 2.15 1.66
P2 3.74 5.08 5.19 5.08
CH4 16.07 17.29 18.32 18.25
CH2O 14.77 16.11 16.46 16.22
CH 3.10 3.43 4.07 3.64
NH 2.79 3.25 3.91 3.67
OH 3.64 4.16 5.18 4.62
LiH 2.36 2.56 2.51 2.52
BeH 1.68 1.87 2.09 2.16
NH3 10.79 12.10 13.19 12.93
H2O 8.29 9.27 10.14 10.09
NO 5.23 6.00 7.15 6.61
O2 3.66 4.69 5.85 5.21
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4 Conclusion

Classical and quantum physical properties have served
as sources of inspiration to deduce a cusp kinetic energy
corrected regularized ERI expression. The performance
of the modi®ed Coulomb-Green's function in calcula-
tions that treat the static correlation explicitly by means
of the CASSCF wave function were investigated. The
potential usefulness of such a regularization approach
where e�ects of dynamic electron correlation are crucial,
was advocated in a reg-CASSCF study on the binding in
Cr2 [23], and has been further substantiated here.

Target systems of this Coulomb hole augmented
CASSCF approach, are those that need near-degenerate
independent particle states for their descriptions. Ex-
amples are provided in an on-going e�ort to understand
recent experimental evidence of local near-degenerate
electronic states in the high-Tc superconducting cuprates
by means of cluster model studies [26±29].

The main objective of the present study has been to
demonstrate the ease by which important e�ects of dy-
namic correlation can be mimicked. Physical arguments
were employed to describe many-body interactions
e�ectively. Earlier, a similar such e�ort resulted in the
Thomas-Fermi method [30, 31]. Two traditions devel-
oped subsequently, comprising the physical e�ective
approach which produced DFT, and a mathematical
school which sought to solve the SchroÈ dinger equation
and provide ab initio quantum chemistry. The domain
of systems that is spanned by these approaches today is

impressive. The next generation of computational in-
struments will most likely exploit the fusion of classical
and quantum dynamics with classical and quantum
e�ective medium theories. It is in this context and in the
spirit of the Thomas-Fermi method, that the present
work hopes to have made a contribution. The behaviour
of the kinetic interpretation of the Coulomb singularity
Eq. (37) in a multicon®gurational treatment is left for
future investigation.
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